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The problem of finding the distribution of the elastic moduli in a heterogeneous elastic from the results of a series of mechanical 
tests under given external effects and measurements of the reactions on the body surface is considered. Two solution algorithms 
are described and a justitlcation is given. 0 1999 Elsevier Science Ltd. All fights reserved. 

1. DESCRIPTION OF THE PROBLEM 

Let a linearlyelastic body which occupies the region I2 be characterized by the tensor of unknown moduli 
of elasticity 4a with components a#u = ai~t/(x) in a Cartesian system of coordinates; the left superscript 
4 in 4~ denotes that the quantity'4fi is a' fourth-rank tensor (second-rank tensors will be denoted by 
a circumflex without a superscript). 

Assigning forces P (displacements g) on the surface g of a body f~ and measuring the resulting 
displacements g ~forees P) the problem is to find the dependence of the components of the moduli of 
elasticity tensor 4~ on the coordinates. 

This inverse problem of the theory of elasticity belongs to the class of so-called inverse coefficient 
problems which arise in applications, such as flaw detection in manufacturing (quality control), 
determining the true stiffness characteristics of structural components and interpreting data of geological 
prospecting. 

In a dynamical formulation of the problem, the external effects are taken to be explosive loads (for 
large objects) or acoustic loads (surface vibrations). Effective solutions have been developed for so- 
called acoustic media, where there is only one unknown scalar coefficient [1, 2]. The methods of the 
inverse scattering problem have been proposed to solve the problem of finding the Lam6 coefficients 
of an isotropic inhomogeneous medium from the results of dynamical tests [12]. 

Problems of finding one scalar coefficient arise in inverse problems of heat conduction, diffusion and 
impedance tomography [5]. It turns out that the discrete formulation of the solution algorithm for 
problems of impedance tomography [3], which involve determining one scalar coefficient in the potential 
equation in non-uniform isotropic conducting media in a static formulation, can be extended to systems 
of partial differential equations, and to the equations of the theory of elasticity in particular. In addition 
to that extension, we give a new algorithm based on the duality concept [4]. 

2. B A S I C  E Q U A T I O N S  A N D  C O N D I T I O N S  

The state of the medium in region f2 is defined by the well-known equilibrium equations 

- 0x i [a0n(x)ela(u)] = F/; e0(u) = 2 ~0xj + bx; ) (2.1) 

where u is the displacement vector, eq are the components of the strain tensor and F i is the density of 
distributed volume forces. Repeated indices denote summation between 1 and 3 (or 2 in the plane 
problem). 

In the tensor notation introduced above, Eqs (2.1) can be written in the form 

-V-[413.-~:(u)] -- F (2.2) 

where V is the Hamilton operator; the dot denotes scalar multiplication (convolution). 
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We add to (2.2) conditions which relate the action and reaction on the surface E 

0 .  ~ r =  4 a . . ~ ( u ) - ~ x  = P(x), x ~ Z (2.3) 

u(x~x = g(x), x ~ Z (2.4) 

where ~ is the stress tensor and v is the vector of the unit outward normal to the surface E. 
The problem reduces to determining the vector field u(x) and the tensor field 4~ (x) in f2 from Eqs 

(2.2) and conditions (2.3) and (2.4) using the known functions P, g, F. The problem is non-linear, and 
can be solved using iterative (step) algorithms. 

3. A L G O R I T H M  1 

We assign the initial distribution of the moduli of elasticity 

4~(x) =4 a(0)(x), x ~ f2  (3.1) 

and solve the first boundary-value proble2"n of ~,he theory of elasticity--the problem with conditions (2.4). 
Having constructed Green's function G = G(°)(x, x0), a second-rank tensor which depends on two 
variables: x--the coordinates of the point of observation, and x0--the coordinates of the point of 
application of the concentrated force, we can write the solution in the form 

uC°)(x) = I d~°)(x, x0) • F(Xo)~o  - I 0(d~°)(x, x0)" g(xo))~o  (3.2) 

In general case the surface reactions computed from solution (3.2) are different from the measured 
reactions P; corrections for the moduli of elasticity are obtained from the discrepancy. 

To compute the first approximation, we put 

4,~0) =4 ~(0) + A4a(I), u 0) = u(0) + Au(t) (3.3) 

(below we shall omit the superscript 1 for simplicity). We substitute expressions (3.3) into the equations 
of equilibrium (2.2) and linearize with respect to the increments A4~, Au; we finally obtain the equation 

- V .  [4,3{0)..~(Au)] = V. [A4~ • -~(u (°))] (3.4) 

which relates the as yet unknown increments A4~, Au. The role of the assigned external actions is now 
played by the right-hand side of Eq. (3.4), and the density F = 0. 

Subjecting the corrected displace~ment field u = u (°) + Au to the boundary condition (2.4) and us~g 
the constructed Green's function ~,(0), we obtain the following relation between the increments A4a, 
Au 

Au(x) = ] ~<°)(x, xo)" V.[A41..~(u~°))]d~o 
t~ 

(3.5) 

We now equate the discrepancy of the forces 

AP = 6(u C°)). v lz - P (3.6) 

to the values of ~(Au), where the field An is expressed in terms of A4~ from formula (3.5). As a result, 
we obtain the following basic functional equation from which to find A4a 

~ G(°)(x, x0) • V • [A4a • 'E(n(°))]d.O0 )" r[~: =/~P(x), x E ~ (3.7) 

4. A L G O R I T H M  2 

As in the previous case, we assign a certain initial distribution of the moduli of elasticity and this 
time solve the second basic problem of the theory of elasticity, with surface forces P assigned on the 
boundary (taking the usual care to ensure uniqueness of the solution in the displacements). 
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Keeping the same notation for Green's function of the problem as before, we write its solution in 
the form 

u(°)(x) = ~ G(°)(X, Xo) • F(xo)d.Q o + .f (~(°)(x, xo)-P(xo)dZ o 
~2 :E 

(4.1) 

Using (3.3) for the corrections, we again arrive at Eq. (3.4) with linearized boundary condition of the 
form 

4 ~(o)..~(Au) • v]z = -A4~ • .~(u(°)) • v] z (4.2) 

The solution of the resulting problem can be expressed in terms of Green's function constructed in the 
zero approximation by the formula 

Au(x) = S (~(°)( x, x0)" (V. [A4~ • -~(uC°))])d,Q0 - (4.3) 
t2 

-I ~(o) (x, Xo)-[A41 • "~(u(°)) • v ]z (x0)dZ0 
z 

Having determined the discrepancy of displacements for solution (4.1) and equating it to the value of 
(4.3) on the surface E, we find a basic functional from which we can find the correction of the moduli 
of elasticity 

j" ~;t°)(X, Xo).(V.[A4~..~(ut°))])df2o- (4.4) 

-~ G(°)(x, xo). [A4~..~(u(°)). t']z(xo)d:C o = 
z 

= g ( x ) -  J" (~(°)(X, Xo) 'P(xo)d~o,  x ~ Z 

Naturally in both algorithms the process is repeated after computing the errors A4~ until the required 
accuracy is attained. 

5. AN A L G O R I T H M  FOR SOLVING THE EQUATIONS 
FOR THE I N C R E M E N T S  

It is hardly possible to find an exact solution of Eqs (3.7) and (4.4), while any approximate methods 
based on representing the solution in the form of series on certain bases will lead to a complication in 
the usual algorithms in this case, as we shall show. 

Let {7~} be a basis in the space of functions given on the boundary E. Since it is mainly algorithmic 
difficulties that are of interest here, we need not specify the structure of these spaces or the form of 
the basis. The spaces of the boundary functions must obviously be spaces of the traces of solutions, and 
so it is necessary to use Sobolev spaces with a fractional index. 

At each step of the algorithms a series of problems is solved and the functions ~ (i = 1, 2 , . . . )  are 
equated either to the solutions themselves or forces expressed in terms of them. As a result, a finite or 
(in theoretical investigations) an infinite sequence of functional equations of the form (3.7) or (4.4) is 
obtained which have different solutions u! °) for the same values of A4~ (0) and A4~. 

In the finite-dimensional version, instead of integral equations we obtain a set of systems of linear 
algebraic equations which have different matrices and right-hand sides, for the same unknowns A4~. 
Generally speaking, of course, the system of equations proves to be overdetermined; it can be solved 
by the least squares method. Numerical application of the technique has shown that it is at this stage 
that it becomes evident if the original problem is ill-posed. In such cases the first and second order are 
regularized with an experimental inspection of the optimum combination of regularization parameters 
and step length ]3 in the correction formula for the moduli of elasticity. 

4a0) =4~(0) + 13A4~ 

Convergence can be proved by a generalization of the methods used to justify the solution of coefficient 
problems when the solution in the region ~ is assumed known and only the coefficients need to be 
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determined [6, 7]. The  solution will be unique if the orientation of the principal axes of the tensor 512g 
is known. 

It was suggested by B. Ye. Pobedrya, during a discussion of this paper, that algorithms based on the 
use of Somigliana's formula might be more efficient. 

This research was supported financially by the Ministry of General and Professional Education (1988, 
No. 97-03-4.3-47) and the Federal Special-Purpose "Integration" Programme (No. 426). 
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